A NOTE ON COHOMOLOGY WITH LIMITED TORSION

BY A. ZABRODSKY

ABSTRACT

In this note we prove that if a class x in a torsion free (ordinary) cohomology ring of a topological space satisfies $x^p = py (p-a \text{ prime})$ than y^p is divisible by p . The proof and the applications of this statement are related to the theory of secondary operations.

0. **Introduction**

0.1. General remarks: In this note, we prove the following:

THEOREM: *Let X be a topological space, and let p be a prime. Suppose* $\beta H^*(X, Z_p) = 0$. If $x \in H^{2n}(X, Z_{p^2})$ satisfies $x^p = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, Z_p)$.

COROLLARY: Let X be a topological space, let p be a prime, and let $G = Z$ *or* Z_{n^r} . Suppose the reduction $H^*(X, G) \to H^*(X, Z_p)$ is onto. If $x \in H^{2n}(X, G)$ *satisfies* $x^p = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, G)$.

The interesting fact about these propositions is that the statements are concerned only with the module and ring structures of the cohomology. (Note that the condition $\beta H^*(X, Z_p) = 0$ is equivalent to $H^*(X, Z_p)$ being free Z_{p^2} module. On the other hand, the proof involves relations between primary and secondary operations.

This note generalizes results of Hubbuck (see [3] lemma 1.3) who used k-theory operations in his study. As a matter of fact, the present note was motivated by his paper.

0.2. Method of proof. A detailed proof is carried out in section 1 for the case *p*-odd. The case $p = 2$ is discussed in Section 2.

In the first step of the proof of the theorem, it is shown (Proposition 1.2) that the mod-p reduction of y is detected by a secondary operation ϕ defined on x.

Received Novembr 5, 1969

(This operation is studied also in [5].) The second step shows that the mod-p reduction of y is zero by showing that $\mathcal{P}^{np}\phi$ can be decomposed (mod the ideal generated by βH^* (, Z_p)) as $\mathcal{P}^1 \beta \phi_1$ where ϕ_1 is a secondary operation associated with the relation $\mathscr{P}^{np-1}\mathscr{P}^n=0$ (p-odd). These two steps are sufficient for the proof of the theorem.

1. The case p-odd. Let $h: K(Z_{p^2}, 2n) \to K(Z_p, 2np)$ be given by $h^*_{2nn} =$ $(i_{2n})^p$, $i_{2n} \in H^{2n}(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_p)$. Let $r: E \to K(\mathbb{Z}_{p^2}, 2n)$ be the fibration induced by *h* from: $\Omega K(Z_p, 2np) \approx K(Z_p, 2np - 1) \rightarrow \mathcal{L} K(Z_p, 2np) \rightarrow K(Z_p, 2np)$ $(\mathscr{L}K(Z_p, 2np)$ —the path space of $K(Z_p, 2np)$). Let $j: K(Z_p, 2np-1) \to E$ be the inclusion of the fiber:

Note that E is a loop space and let μ denote its loop addition.

1.1. THEOREM (L. Smith, [4] proposition 5.5 III): *As an algebra* $H^*(E, Z_p) \approx (H^*(K(Z_{p^2}, 2n), Z_p) / \lim h^*) \otimes \text{im } j^*$.

1.2. PROPOSITION *There exists* $v \in H^{2np}(E, Z_p^2)$ *satisfying* $pv = (r^*t_{2n})^p$ *,* $t_{2n} \in H^{2n}(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_{p^2})$ and $j^*v_0 = \beta t_{2np-1}$ where $v_0 \in H^{2np}(E, \mathbb{Z}_p)$ is the re*duction of v.*

PROOF. Consider the following ladder of fibrations:

$$
E \xrightarrow{j_0} K Z_{p^2}, 2np)
$$
\n
$$
\downarrow r \qquad \qquad \downarrow r_0
$$
\n
$$
K(Z_{p^2}, 2n) \xrightarrow{h_0} K(Z_{p^2}, 2np)
$$
\n
$$
\downarrow h \qquad \qquad \downarrow g_0
$$
\n
$$
K(Z_p, 2np) \xrightarrow{i_1} K(Z_p, 2np) \times K(Z_p, 2np + 1)
$$

where i_1 is the injection; $g_0 = (g_0' \times g_0'')^{\circ} \Delta$, g_0 induced by the reduction $Z_{p^2} \to Z_p$ of homotopy groups and $g_0''^*(i_{2np+1}) = \beta_2 i_{2np}; h_0^* i_{2np} = (i_{2n})^p$. One

Vol. 8 1970 COHOMOLOGY

can check that r_0 induces the multiplication by p of homotopy groups. $v = j_0^* i_{2np} \in H^{2np}(E, Z_{p^2})$ is the desired class.

1.3 PROPOSITION: *There exists* $v_1 \in H^{2np}(E, Z_p)$ with

$$
j^*v_1 = \beta \iota_{2np-1} \text{ and } \mu^*v_1 = v_1 \otimes 1 + 1 \otimes v_1 +
$$

$$
\lambda \sum_{a=1}^{p-1} \frac{1}{p} {p \choose a} (r^* i_{2n})^b \otimes (r^* i_{2n})^{p-a}, \qquad 0 \neq \lambda \in Z_p.
$$

PROOF. Consider the fibration: $K(Z_p, 2np + 1) \rightarrow E' \rightarrow K(Z_p, 2np + 1)$ induced by $h_1: K(Z_p, 2n + 1) \to K(Z_p, 2np + 2)$ $h_1^* \iota_{2np+2} = \beta \mathcal{P}^n$ i_{2n+1} . Since h_1^* is a monomorphism in dim $\leq 2n + 2 j_1^* = 0$ in dim $\leq 2np + 1$ and $1 \otimes 1_{2np} \in H^*$ $(\Omega E_1, Z_p) = h^*(K(Z_p, 2n) \times K(Z_p, 2np), Z_p)$ is not in im σ^* . By [2] theorem 5.14, it follows that $1 \otimes t_{2np}$ is not a primitive. This implies that $a^p \neq 0$ for $0 \neq a \in H_{2n}(\Omega E_1, Z_p)$ and hence, there exists a class $u \in H^{2np}(\Omega E, Z_p)$ with $\mu_0^* u = \sum_{a=1}^{\infty} \frac{1}{p} \left(\frac{1}{a} \right) (\Omega r_1^2 t_{2n})^2 \otimes (\Omega r_1 t_{2n})^p$ and $u = u' \otimes 1 + 1 \otimes t_{2np}$. Choosing a different representation of ΩE_1 as a cartesian product $K(Z_p, 2n) \times K(Z_p, 2np)$ one may assume that

$$
\bar{\mu}_0^*(1\otimes 1_{2np})\,=\,\sum_{a=1}^{p-1}\,\frac{1}{p}\,\binom{p}{a}\,(\Omega r_1^*1_{2n})^a\otimes(\Omega r_1^*1_{2n})^{p-a}\,.
$$

Now, we have the following diagram:

$$
E' \xrightarrow{h'_1} E_1
$$
\n
$$
\downarrow \qquad \swarrow
$$
\n
$$
K(Z_{p^2}, 2n+1)
$$
\n
$$
\downarrow \qquad \searrow h_1
$$
\n
$$
K(Z_p, 2np+1) \longrightarrow K(Z_p, 2np+2)
$$

and $\Omega E' = E$; $h_2^* i_{2np+1} = \mathcal{P}^n i_{2n+1}$. One can see that $v_1 = (\Omega h_1^*) (1 \otimes i_{2np})$ is the desired class. Note that v_1^p is primitive and by Theorem 1.1, $v_0 - v_1$ is in the ideal generated by $im r^*$.

1.4 LEMMA. Let $F \stackrel{i}{\rightarrow} E \stackrel{p}{\rightarrow} B$ be a fibration, $f: \Omega B \rightarrow F$ the inclusion of the *fiber of i. If t* \in *H**(*B, Z_p) is in kerp**, *then* σ * $t \in$ *H**(Ω *B, Z_p) is in* im*f**.

PROOF. Consider the mapping $g: B \to K(Z_p, |t|)$, with $g^*t = t$ and where $|t|$ denotes the dimnesion of t. Since $g \circ p \approx^*$ we have the following ladder:

1.5. LEMMA. There exists $\omega \in PH^*(E, Z_p)$ satisfying $j^*\omega = \mathscr{P}^{np-1} \mathfrak{t}_{2np-1}$ and $\sigma^* \omega = 1 \otimes \mathcal{P}^{np-1} \iota_{2np-2} \in H^*(\Omega E, Z_p) = H^*(K(Z_{p^2}, 2n-1) \times K(Z_p, 2np-2), Z_p).$

PROOF. Consider the fibration:

$$
K(Z_p, 2np) \xrightarrow{j_2} E' \xrightarrow{r_2} K(Z_{p^2}, 2n+1)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathscr{L}K(Z_p, 2np+1) \longrightarrow K(Z_p, 2np+1)
$$

 $h_2^* \mathbf{1}_{2np+1} = \mathscr{P}^n \mathbf{1}_{2n+1}, \quad \Omega E' = E.$

Since $\mathscr{P}^{np-1}\mathscr{P}^n = 0$ $\mathscr{P}^{np-1}\mathfrak{t}_{2np+1} = 0$ and by 1.4 there exists $\omega' \in H^*(E', Z_p)$ satisfying $j_2^*\omega' = \mathcal{P}^{np-1}1_{2np}$, $\sigma^*\sigma^*\omega' = 1 \otimes \mathcal{P}^{np-1}1_{2np-2} + u' \otimes 1 \in H^*(\Omega \Omega E', Z_p)$ is a primitive and hence, $u' \in PH^*(K(Z_{p^2}, 2n-1), Z_p) \subset \text{im } \sigma^* \sigma^*$. Altering ω' by element in im r_2^* we have $\sigma^* \sigma^* \omega' = 1 \otimes \mathcal{P}^{np-1} \mathfrak{t}_{2np-2}$ and $\omega = \sigma^* \omega'$ is the desired class.

1.6. PROPOSITION. Let $\xi: H^*(E, Z_p) \to H^*(E, Z_p)$ be the p-th power operation $\xi t = t^p$. Then

$$
\mathscr{P}^1\beta\omega-v_1^p\in r^*(\operatorname{im}\xi) = \xi(\operatorname{im} r^*).
$$

PROOF. $j^*(\mathcal{P}^1\beta\omega-v_1^p)=(\mathcal{P}^1\beta\mathcal{P}^{np-1}-\mathcal{P}^{np}\beta)\mathbf{1}_{2n-p-1}=0$. Hence, by Theorem 1.1, $\mathscr{P}^1\beta\omega - v_1^p$ is in the ideal generated by $\overline{im r^*}$. But $\mathscr{P}^1\beta\omega - v_1^p$ being a primitive and since $H^*(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_p)$ and im r^* are primitively generated, this implies that $\mathscr{P}^1 \beta \omega - v_1^p \epsilon r^*(PH^*(K(Z_{n^2}, 2n), Z_n))$. Finally $\sigma^*(\mathscr{P}^p \beta \omega - v_1^p) =$ $1 \otimes \mathcal{P}^1 \beta P^{np-1} \iota_{2np-2} = 0$, hence $\mathcal{P}^1 \beta \omega - v_1^p \in r^* \big[(PH^{2np} K(Z_{p^2}, 2n) \cap \ker \sigma^* \big]$ $r^*(\text{im}\,\xi)$.

1.7 PROPOSITION. $v_0^p - \mathcal{P}^1 \beta \omega$ is in the ideal generated by

$$
r^*[\beta \bar{H}^*(K(Z_{p^2}, 2n), Z_p)].
$$

PROOF. $v_1^p - v_0^p = \xi(v_1 - v_0)$ and \mathcal{P}^1 $\beta\omega - v_1^p$ are in the ideal generated b $\xi(\text{im } r^*)$. But since $\xi \mathscr{P}^j i_{2n} = \mathscr{P}^{pj} \xi i_{2n} \in \text{ker } r^*$, $\xi(\text{im } r^*) = \xi r^* A$ where $A \subset$ $H^*(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_p)$ is the algebra generated by $\beta \bar{H}^*(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_p)$.

COHOMOLOGY

1.8. THEOREM. *Let X be a topological space, p--an odd prime, and* $x \in H^{2n}(X, Z_{p^2})$. If $\beta H^*(X, Z_p) = 0$ and $x^p = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, Z_{n^2})$.

PROOF. Let $f: X \to K(Z_{n^2}, 2n)$ be given by $f^*t_{2n} = x$. f can be lifted to $\tilde{f}: X \to E$ and by 1.2 $x^p = p\tilde{f}^*v$. Hence, $y - \tilde{f}^*v$ has order p. But as the Bockstein exact sequence for X yields a short exact sequence,

$$
0 \to H^*(X, Z_p) \to H^*(X, Z_{p^2}) \to H^*(X, Z_p) \to 0,
$$

 $H^*(X, Z_n) \stackrel{\times p}{\rightarrow} H^*(X, Z_{p^2}) \rightarrow H^*(X, Z_p) \rightarrow 0$ is exact and $y - \tilde{f}v = pz_1$ for some $z_1 \in H^{2np}(X, Z_{n^2})$. Moreover, by 1.7, $(\tilde{f}^*v_0)^p$ is in the ideal generated $\beta \bar{H}^*(X, Zp) = 0$, hence $(\hat{f}^*v_0)^p = 0$ and again $(\hat{f}^*v)^p = pz_2$, $z_2 \in H^{2np^2}(X, Z_{p^2})$. It follows that $(pz_1)^p = (y - \tilde{f}^*v)^p = y^p - pz_2 + pz_3$ and 1.8 follows.

1.9. COROLLARY Let X be a topological space, p-an odd prime, and let G *be either Z or* Z_{p^*} *. Suppose* $H^*(X, G) \to H^*(X, Z_p)$ *is onto. If* $x \in H^{2n}(X, G)$ *satisfies* $x^p = py$ then $y^p = pz$ for some $z \in H^{2np^p}(X, G)$.

In order to prove 1.9, we first prove the following:

1.10. LEMMA. *If* $H^*(X, Z_{n}) \to H^*(X, Z_n)$ is onto, then (a) $H^*(X, Z_{n'}) \xrightarrow{X} P H^*(X, Z_{n'}) \xrightarrow{\alpha} H^*(X, Z_n) \rightarrow 0$ is exact. (b) $h^*(X, Z_{p^v}) \xrightarrow{\alpha_{r,t}} H^*(X, Z_{p^t})$ is onto for all $1 \leq t \leq r$.

PROOF. We first note that $\alpha_i: H^*(X, Z_p t) \to H^*(X, Z_p)$ is onto for all $1 \leq t \leq r$. Hence, the Bockstein long exact sequence decomposes into short exact sequences: $0 \to H^*(X, Z_{p^{t-1}}) \to H^*(X, Z_{p^t}) \to H^*(X, Z_p) \to 0$. If $(b)_t H^*(X, Z_{p^t}) \to$ $H^*(X, Z_{p^{t-1}})$ is onto, then it follows that:

$$
(a)_t \qquad H^*(X, Z_{p^t}) \xrightarrow{\times p} H^*(X, Z_{p^t}) \xrightarrow{\alpha_t} H^*(X, Z_p) \to 0
$$

is exact.

Suppose (a) _t holds.

Consider now $\alpha_{t+1,i}$: $H^*(X, Z_{p^{t+1}}) \to H^*(X, Z_{p^t})$. If $x \in H^*(X, Z_{p^t})$ then, for some $h_1 \in H^*(X, Z_{p^{t+1}})$ $x - \alpha_{t+1,t}y_1 \in \text{ker}\{\alpha_t\}$ and hence, by $(a)_t$, $x = \alpha_{t+1,t}y_1 + px_1$ for some $x_1 \in H^*(X, Z_{p^t})$. Similarly,

$$
x_1 = \alpha_{t+1,t} y_2 + p x_2
$$

$$
x_{t-1} = \alpha_{t+1,t} y_t + p x_t
$$

$$
x_i \in H^*(X, Z_{pt})
$$

Therefore,

$$
x = \alpha_{t+1,t}(y_1 + py_2 + \dots + p^{t-1}y_t) + p^t x_t
$$

and as $p^t x_t = 0$, it follows that

$$
(b)_{t+1}a_{t+1,t}: H^*(X, Z_{p^{t+1}}) \to H^*(X, Z_{p^t})
$$

is onto and the lemma follows from the inductive argument $(a)_t \Rightarrow (b)_{t+1} \Rightarrow (a)_{t+1}$ $((b)₁$ obviously holds.)

PROOF OF COROLLARY. If $x^p = py$, then the image of y^p in $H^*(X, Z_p)$ is zero. This follows from 1.8 by reducing x and y to $H^*(X, Z_{n^2})$. But then, if $G = Z_{n^*}$, by 1.10 (a) $y^p = pz$ for some $z \in H^{2np^2}(X, Z_{p^r})$ The case $G = Z$ follows similarly from the exact sequence $0 \to H^*(X, Z) \stackrel{\times p}{\to} H^*(X, Z) \to H^*(X, Z_n) \to 0$

2. The case $p = 2$ and general remarks. The only proposition in section 1 which fails to hold after replacing \mathcal{P}^k by Sq^{2k} is 1.5 as $Sq^{4n-2}Sq^{2n} \neq 0$.

Instead we have $Sq^{4n-2}Sq^{2n} + Sq^{4n-1}Sq^{2n-1} = 0$. To overcome this difficulty, we replace the "universal example" E by \tilde{E} obtained as the fiber of \tilde{h} : $K(Z_4,2n) \rightarrow K(Z_2,4n) \times K(Z_2,4n-1)$ satisfying $\tilde{h}^* \iota_{4n} = \iota_{2n}, \tilde{h}^* \iota_{4n-1} = Sq^{2n-1} \iota_{2n}$. We then have a class $\tilde{\omega} \in H^*(\tilde{E}, Z_2)$ with $j^*\tilde{\omega} = Sq^{4n-2}t_{4n-1} \otimes 1$ where $j: K(\mathbb{Z}_2, 4n - 1) \times K(\mathbb{Z}_2, 4n - 2) \rightarrow \tilde{E}$ is the inclusion of the fiber. The mapping $f: X \to K(Z_4, 2n)$ realizing the class x can still be lifted to $\hat{f}: X \to \tilde{E}$ as $Sq^{4n-1}x = Sq^1Sq^{4n-2}x = 0$ and the rest of the arguments follow through.

We would like to remark that, in general, if $x^p = py$ it might happen that y is divisible by p and then 1.8 is essentially void. This, however, cannot happen if X is an H-space and $x_1^p = 0 \mod p$ yields a (non zero mod-p) class x_2 with $x_2^p = 0$ mod-p and the procedure yields an ∞ tower of elements $x_n, x_n^p = 0$, x_n being a (mod-p) 1-implication of x_n (in the sense of W. Browder, see [1] page 357).

REFERENCES

1. W. Browder, *Higher torsion in H-spaces,* Trans. Amer. Math. Soc. 108 (1963), 353-375.

2. W. Browder, *On differential Hopfalgebras,* Trans. Amer. Math. Soc. 107 (1963), 153-176.

3. J. Hubbuck, *On finitely generated cohomology Itopf algebra* (-mimeographed).

4. L. Smith, *Cohomology of stable two-stage Postnikov system,* Ill. J. of Math. 11 (1967), 310-329.

5. A. Zabrodsky, *Implications in the cohomology of H-spaces* to, appear.

UNIVERSITY OF ILLINOIS CHICAGO CIRCLE