A NOTE ON COHOMOLOGY WITH LIMITED TORSION

by A. ZABRODSKY

ABSTRACT

In this note we prove that if a class x in a torsion free (ordinary) cohomology ring of a topological space satisfies $x^p = py (p-a \text{ prime})$ than y^p is divisible by p. The proof and the applications of this statement are related to the theory of secondary operations.

0. Introduction

0.1. General remarks: In this note, we prove the following:

THEOREM: Let X be a topological space, and let p be a prime. Suppose $\beta H^*(X, Z_p) = 0$. If $x \in H^{2n}(X, Z_{p^2})$ satisfies $x^p = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, Z_p)$.

COROLLARY: Let X be a topological space, let p be a prime, and let G = Zor Z_{p^r} . Suppose the reduction $H^*(X, G) \to H^*(X, Z_p)$ is onto. If $x \in H^{2n}(X, G)$ satisfies $\overset{|f|}{x^p} = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, G)$.

The interesting fact about these propositions is that the statements are concerned only with the module and ring structures of the cohomology. (Note that the condition $\beta H^*(X, Z_p) = 0$ is equivalent to $H^*(X, Z_{p^2})$ being free Z_{p^2} module. On the other hand, the proof involves relations between primary and secondary operations.

This note generalizes results of Hubbuck (see [3] lemma 1.3) who used k-theory operations in his study. As a matter of fact, the present note was motivated by his paper.

0.2. Method of proof. A detailed proof is carried out in section 1 for the case p-odd. The case p = 2 is discussed in Section 2.

In the first step of the proof of the theorem, it is shown (Proposition 1.2) that the mod-p reduction of y is detected by a secondary operation ϕ defined on x.

Received Novembr 5, 1969

(This operation is studied also in [5].) The second step shows that the mod-*p* reduction of *y* is zero by showing that $\mathscr{P}^{np}\phi$ can be decomposed (mod the ideal generated by $\beta H^*(, Z_p)$) as $\mathscr{P}^1\beta\phi_1$ where ϕ_1 is a secondary operation associated with the relation $\mathscr{P}^{np-1}\mathscr{P}^n = 0$ (*p*-odd). These two steps are sufficient for the proof of the theorem.

1. The case p-odd. Let $h: K(Z_{p^2}, 2n) \to K(Z_p, 2np)$ be given by $h^*\iota_{2np} = (i_{2n})^p$, $i_{2n} \in H^{2n}(K(Z_{p^2}, 2n), Z_p)$. Let $r: E \to K(Z_{p^2}, 2n)$ be the fibration induced by h from: $\Omega K(Z_p, 2np) \approx K(Z_p, 2np - 1) \to \mathscr{L}K(Z_p, 2np) \to K(Z_p, 2np)$ ($\mathscr{L}K(Z_p, 2np)$ —the path space of $K(Z_p, 2np)$). Let $j: K(Z_p, 2np - 1) \to E$ be the inclusion of the fiber:

Note that E is a loop space and let μ denote its loop addition.

1.1. THEOREM (L. Smith, [4] proposition 5.5 III): As an algebra $H^*(E, \mathbb{Z}_p) \approx (H^*(K(\mathbb{Z}_{p^2}, 2n), \mathbb{Z}_p) // \operatorname{im} h^*) \otimes \operatorname{im} j^*$.

1.2. PROPOSITION There exists $v \in H^{2np}(E, Z_p^2)$ satisfying $pv = (r^*\iota_{2n})^p$, $\iota_{2n} \in H^{2n}(K(Z_{p^2}, 2n), Z_{p^2})$ and $j^*v_0 = \beta\iota_{2np-1}$ where $v_0 \in H^{2np}(E, Z_p)$ is the reduction of v.

PROOF. Consider the following ladder of fibrations:

$$E \xrightarrow{j_0} K Z_{p^2}, 2np)$$

$$\downarrow r \qquad \downarrow r_0$$

$$K(Z_{p^2}, 2n) \xrightarrow{h_0} K(Z_{p^2}, 2np)$$

$$\downarrow h \qquad \qquad \downarrow g_0$$

$$K(Z_p, 2np) \xrightarrow{i_1} K(Z_p, 2np) \times K(Z_p, 2np+1)$$

where i_1 is the injection; $g_0 = (g'_0 \times g''_0)^\circ \Delta$, g_0 induced by the reduction $Z_{p^2} \to Z_p$ of homotopy groups and $g''_0 \ast (i_{2np+1}) = \beta_2 \iota_{2np}$; $h_0^* \iota_{2np} = (\iota_{2n})^p$. One

COHOMOLOGY

can check that r_0 induces the multiplication by p of homotopy groups. $v = j_0^* \iota_{2np} \in H^{2np}(E, \mathbb{Z}_{p^2})$ is the desired class.

1.3 PROPOSITION: There exists $v_1 \in H^{2np}(E, Z_p)$ with

$$j^* v_1 = \beta \iota_{2np-1} \text{ and } \mu^* v_1 = v_1 \otimes 1 + 1 \otimes v_1 + \lambda \sum_{a=1}^{p-1} \frac{1}{p} \binom{p}{a} (r^* \overline{\iota}_{2n})^b \otimes (r^* \overline{\iota}_{2n})^{p-a}, \quad 0 \neq \lambda \in Z_p$$

PROOF. Consider the fibration: $K(Z_p, 2np + 1)^{i_1} \to E^{r_1} K(Z_{p^2}, 2np + 1)$ induced by $h_1: K(Z_p, 2n+1) \to K(Z_p, 2np + 2) h_1^* \iota_{2np+2} = \beta \mathscr{P}^n \ \overline{\imath}_{2n+1}$. Since h_1^* is a monomorphism in dim $\leq 2n + 2 \ j_1^* = 0$ in dim $\leq 2np + 1$ and $1 \otimes \iota_{2np} \in H^*$ $(\Omega E_1, Z_p) = h^*(K(Z_{p^2}, 2n) \times K(Z_p, 2np), Z_p)$ is not in im σ^* . By [2] theorem 5.14, it follows that $1 \otimes \iota_{2np}$ is not a primitive. This implies that $a^p \neq 0$ for $0 \neq a \in H_{2n}(\Omega E_1, Z_p)$ and hence, there exists a class $u \in H^{2np}(\Omega E, Z_p)$ with $\overline{\mu}_0^* u = \sum_{a=1}^{p-1} \frac{1}{p} {p \choose a} (\Omega r_1^* \iota_{2n})^a \otimes (\Omega r_1 \iota_{2n})^{p-a}$ and $u = u' \otimes 1 + 1 \otimes \iota_{2np}$. Choosing a different representation of ΩE_1 as a cartesian product $K(Z_{p^2}, 2n) \times K(Z_p, 2np)$ one may assume that

$$\bar{\mu}_0^*(1\otimes\iota_{2np}) = \sum_{a=1}^{p-1} \frac{1}{p} \binom{p}{a} (\Omega r_1^*\iota_{2n})^a \otimes (\Omega r_1^*\iota_{2n})^{p-a}.$$

Now, we have the following diagram:

and $\Omega E' = E$; $h_2^* \iota_{2np+1} = \mathscr{P}^n \tilde{\iota}_{2n+1}$. One can see that $v_1 = (\Omega h_1^*)$ $(1 \otimes \iota_{2np})$ is the desired class. Note that v_1^p is primitive and by Theorem 1.1, $v_0 - v_1$ is in the ideal generated by im r^* .

1.4 LEMMA. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration. $f: \Omega B \to F$ the inclusion of the fiber of *i*. If $t \in H^*(B, \mathbb{Z}_p)$ is in ker p^* , then $\sigma^* t \in H^*(\Omega B, \mathbb{Z}_p)$ is in im f^* .

PROOF. Consider the mapping $g: B \to K(Z_p, |t|)$, with $g^*t = t$ and where |t| denotes the dimnesion of t. Since $g \circ p \approx^*$ we have the following ladder:

1.5. LEMMA. There exists $\omega \in PH^*(E, Z_p)$ satisfying $j^*\omega = \mathscr{P}^{np-1}\iota_{2np-1}$ and $\sigma^*\omega = 1 \otimes \mathscr{P}^{np-1}\iota_{2np-2} \in H^*(\Omega E, Z_p) = H^*(K(Z_{p^2}, 2n-1) \times K(Z_p, 2np-2), Z_p).$

PROOF. Consider the fibration:

 $h_2^*\mathfrak{l}_{2np+1}=\mathscr{P}^n\mathfrak{i}_{2n+1},\quad \Omega E'=E.$

Since $\mathscr{P}^{np-1}\mathscr{P}^n = 0 \ \mathscr{P}^{np-1}\iota_{2np+1} = 0$ and by 1.4 there exists $\omega' \in H^*(E', Z_p)$ satisfying $j_2^*\omega' = \mathscr{P}^{np-1}\iota_{2np}$. $\sigma^*\sigma^*\omega' = 1 \otimes \mathscr{P}^{np-1}\iota_{2np-2} + u' \otimes 1 \in H^*(\Omega\Omega E', Z_p)$ is a primitive and hence, $u' \in PH^*(K(Z_{p^2}, 2n-1), Z_p) \subset \operatorname{im} \sigma^*\sigma^*$. Altering ω' by element in $\operatorname{im} r_2^*$ we have $\sigma^*\sigma^*\omega' = 1 \otimes \mathscr{P}^{np-1}\iota_{2np-2}$ and $\omega = \sigma^*\omega'$ is the desired class.

1.6. PROPOSITION. Let $\xi: H^*(E, Z_p) \to H^*(E, Z_p)$ be the p-th power operation $\xi t = t^p$. Then

$$\mathscr{P}^{1}\beta\omega-v_{1}^{p}\in r^{*}(\operatorname{im}\xi) = \xi(\operatorname{im}r^{*}).$$

PROOF. $j^*(\mathscr{P}^1\beta\omega - v_1^p) = (\mathscr{P}^1\beta\mathscr{P}^{np-1} - \mathscr{P}^{np}\beta)\iota_{2n-p-1} = 0$. Hence, by Theorem 1.1, $\mathscr{P}^1\beta\omega - v_1^p$ is in the ideal generated by im r^* . But $\mathscr{P}^1\beta\omega - v_1^p$ being a primitive and since $H^*(K(Z_{p^2}, 2n), Z_p)$ and im r^* are primitively generated, this implies that $\mathscr{P}^1\beta\omega - v_1^p \in r^*(PH^*(K(Z_{p^2}, 2n), Z_p))$. Finally $\sigma^*(\mathscr{P}^p\beta\omega - v_1^p) = 1 \otimes \mathscr{P}^1\beta P^{np-1}\iota_{2np-2} = 0$, hence $\mathscr{P}^1\beta\omega - v_1^p \in r^*[(PH^{2np}K(Z_{p^2}, 2n) \cap \ker \sigma^*] \subset r^*(\operatorname{im} \xi)$.

1.7 **PROPOSITION.** $v_0^p - \mathscr{P}^1 \beta \omega$ is in the ideal generated by

$$r^*[\beta \bar{H}^*(K(Z_{p^2},2n),Z_p)].$$

PROOF. $v_1^p - v_0^p = \xi(v_1 - v_0)$ and $\mathscr{P}^1 \beta \omega - v_1^p$ are in the ideal generated b $\xi(\operatorname{im} r^*)$. But since $\xi \mathscr{P}^j \overline{i}_{2n} = \mathscr{P}^{pj} \xi \overline{i}_{2n} \in \ker r^*$, $\xi(\operatorname{im} r^*) = \xi r^* A$ where $A \subset H^*(K(Z_{p^2}, 2n), Z_p)$ is the algebra generated by $\beta \overline{H}^*(K(Z_p, 2n), Z_p)$.

COHOMOLOGY

1.8. THEOREM. Let X be a topological space, p—an odd prime, and $x \in H^{2n}(X, Z_{p^2})$. If $\beta H^*(X, Z_p) = 0$ and $x^p = py$, then $y^p = pz$ for some $z \in H^{2np^2}(X, Z_{p^2})$.

PROOF. Let $f: X \to K(Z_{p^2}, 2n)$ be given by $f^*\iota_{2n} = x$. f can be lifted to $\tilde{f}: X \to E$ and by 1.2 $x^p = p\tilde{f}^*v$. Hence, $y - \tilde{f}^*v$ has order p. But as the Bockstein exact sequence for X yields a short exact sequence,

$$0 \to H^*(X, Z_p) \to H^*(X, Z_{p^2}) \to H^*(X, Z_p) \to 0,$$

 $H^*(X, Z_p 2) \xrightarrow{\times p} H^*(X, Z_{p^2}) \to H^*(X, Z_p) \to 0$ is exact and $y - \tilde{f}v = pz_1$ for some $z_1 \in H^{2np}(X, Z_{p^2})$. Moreover, by 1.7, $(\tilde{f}^* v_0)^p$ is in the ideal generated $\beta \bar{H}^*(X, Zp) = 0$, hence $(\tilde{f}^* v_0)^p = 0$ and again $(\tilde{f}^* v)^p = pz_2, z_2 \in H^{2np^2}(X, Z_{p^2})$. It follows that $(pz_1)^p = (y - \tilde{f}^* v)^p = y^p - pz_2 + pz_3$ and 1.8 follows.

1.9. COROLLARY Let X be a topological space, p—an odd prime, and let G be either Z or Z_{p^r} . Suppose $H^*(X,G) \to H^*(X,Z_p)$ is onto. If $x \in H^{2n}(X,G)$ satisfies $x^p = py$ then $y^p = pz$ for some $z \in H^{2np^r}(X,G)$.

In order to prove 1.9, we first prove the following:

1.10. LEMMA. If $H^*(X, Z_{p^r}) \to H^*(X, Z_p)$ is onto, then (a) $H^*(X, Z_{p^r}) \xrightarrow{\times p} H^*(X, Z_{p^r}) \xrightarrow{\alpha_r} H^*(X, Z_p) \to 0$ is exact. (b) $h^*(X, Z_{p^v}) \xrightarrow{\alpha_{r,t}} H^*(X, Z_{p^t})$ is onto for all $1 \leq t \leq r$.

PROOF. We first note that $\alpha_t: H^*(X, Z_p t) \to H^*(X, Z_p)$ is onto for all $1 \leq t \leq r$. Hence, the Bockstein long exact sequence decomposes into short exact sequences: $0 \to H^*(X, Z_{p^{t-1}}) \to H^*(X, Z_{p^t}) \to H^*(X, Z_p) \to 0$. If $(b)_t \quad H^*(X, Z_{p^t}) \to H^*(X, Z_{p^{t-1}})$ is onto, then it follows that:

$$(a)_t \qquad \qquad H^*(X, Z_{p^t}) \xrightarrow{\times p} H^*(X, Z_{p^t}) \xrightarrow{\alpha_t} H^*(X, Z_p) \to 0$$

is exact.

Suppose $(a)_t$ holds.

Consider now $\alpha_{t+1,t}$: $H^*(X, Z_{p^{t+1}}) \to H^*(X, Z_{p^t})$. If $x \in H^*(X, Z_{p^t})$ then, for some $h_1 \in H^*(X, Z_{p^{t+1}}) \times -\alpha_{t+1,t} y_1 \in \ker! \alpha_t$ and hence, by $(a)_t, x = \alpha_{t+1,t} y_1 + p x_1$ for some $x_1 \in H^*(X, Z_{p^t})$. Similarly,

$$x_{1} = \alpha_{t+1,t} y_{2} + p x_{2}$$

$$x_{t-1} = \alpha_{t+1,t} y_{t} + p x_{t}$$

$$x_{i} \in H^{*}(X, Z_{p^{t}})$$

Therefore,

$$x = \alpha_{t+1,t}(y_1 + py_2 + \dots + p^{t-1}y_t) + p^t x_t$$

and as $p^t x_t = 0$, it follows that

$$(b)_{t+1}\alpha_{t+1,t}$$
: $H^*(X, Z_{p^{t+1}}) \to H^*(X, Z_{p^t})$

is onto and the lemma follows from the inductive argument $(a)_t \Rightarrow (b)_{t+1} \Rightarrow (a)_{t+1}$ ((b)₁ obviously holds.)

PROOF OF COROLLARY. If $x^p = py$, then the image of y^{p} in $H^*(X, Z_p)$ is zero. This follows from 1.8 by reducing x and y to $H^*(X, Z_{p^2})$. But then, if $G = Z_{p^r}$, by 1.10 (a) $y^p = pz$ for some $z \in H^{2np^2}(X, Z_{p^r})$ The case G = Z follows similarly from the exact sequence $0 \to H^*(X, Z) \xrightarrow{\times p} H^*(X, Z) \to H^*(X, Z_p) \to 0$

2. The case p = 2 and general remarks. The only proposition in section 1 which fails to hold after replacing \mathcal{P}^k by Sq^{2k} is 1.5 as $Sq^{4n-2}Sq^{2n} \neq 0$.

Instead we have $Sq^{4n-2}Sq^{2n} + Sq^{4n-1}Sq^{2n-1} = 0$. To overcome this difficulty, we replace the "universal example" E by \tilde{E} obtained as the fiber of $\tilde{h}:K(Z_4,2n) \rightarrow K(Z_2,4n) \times K(Z_2,4n-1)$ satisfying $\tilde{h}^*\iota_{4n} = \iota_{2n}, \tilde{h}^*\iota_{4n-1} = Sq^{2n-1}\iota_{2n}$. We then have a class $\tilde{\omega} \in H^*(\tilde{E},Z_2)$ with $\tilde{j}^*\tilde{\omega} = Sq^{4n-2}\iota_{4n-1} \otimes 1$ where $\tilde{j}:K(Z_2,4n-1) \times K(Z_2,4n-2) \rightarrow \tilde{E}$ is the inclusion of the fiber. The mapping $f: X \rightarrow K(Z_4,2n)$ realizing the class x can still be lifted to $\hat{f}: X \rightarrow \tilde{E}$ as $Sq^{4n-1}x = Sq^1Sq^{4n-2}x = 0$ and the rest of the arguments follow through.

We would like to remark that, in general, if $x^p = py$ it might happen that y is divisible by p and then 1.8 is essentially void. This, however, cannot happen if X is an H-space and $x_1^p = 0 \mod p$ yields a (non zero mod-p) class x_2 with $x_2^p = 0 \mod p$ and the procedure yields an ∞ tower of elements $x_n, x_n^p = 0$, x_n being a (mod-p) 1-implication of x_n (in the sense of W. Browder, see [1] page 357).

References

1. W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353-375.

2. W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153-176.

3. J. Hubbuck, On finitely generated cohomology Hopf algebra (-mimeographed).

4. L. Smith, Cohomology of stable two-stage Postnikov system, Ill. J. of Math. 11 (1967), 310-329.

5. A. Zabrodsky, Implications in the cohomology of H-spaces to, appear.

UNIVERSITY OF ILLINOIS CHICAGO CIRCLE

164