A NOTE ON COHOMOLOGY WITH LIMITED TORSION

BY
A. ZABRODSKY

ABSTRACT
In this note we prove that if a class x in a torsion free (ordinary) cohomology
ring of a topological space satisfies x? = py (p—a prime) than y? is divisible
by p. The proof and the applications of this statement are related to the
theory of secondary operations.

0. Introduction
0.1. General remarks: In this note, we prove the following:

THEOREM: Let X be a topological space, and let p be a prime. Suppose
BH*(X,Z,) = 0. If xe H*(X,Z,2) satisfies x* = py, then y* = pz for some
ze H*"(X,Z,).

CoROLLARY: Let X be a topological space, let p be a prime, and let G = Z
or Z,. Suppose the reduction H*(X, G)—» H*(X, Z,) is onto. If x e H*(X,G)
satisfies XP = py, then y? = pz for some ze H*""'(X,G).

The interesting fact about these propositions is that the statements are con-
cerned only with the module and ring structures of the cohomology. (Note that
the condition BH*(X,Z,) = 0 is equivalent to H*(X, Z,.) being free Z,. module.
On the other hand, the proof involves relations between primary and secondary
operations.

This note generalizes results of Hubbuck (see [3] lemma 1.3) who used k-theory
operations in his study. As a matter of fact, the present note was motivated by
his paper.

0.2, Method of proof. A detailed proof is carried out in section 1 for the case
p-odd. The case p = 2 is discussed in Section 2.

In the first step of the proof of the theorem, it is shown (Proposition 1.2) that
the mod-p reduction of y is detected by a secondary operation ¢ defined on x.
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{(This operation is studied also in [5].) The second step shows that the mod-p
reduction of y is zero by showing that "¢ can be decomposed (mod the ideal
generated by fH* ( ,Z,)) as 2'B¢, where ¢, is a secondary operation associated
with the relation 2™ '2" = 0 (p-odd). These two steps are sufficient for the
proof of the theorem.

1. The case p-odd. Let h:K(Z,.,2n) > K(Z,,2np) be given by h*i,,, =
(i), iz,,eHZ”(K(sz,Zn),ZI,). Let r: E - K(Z,2,2n) be the fibration induced
by h from: QK(Z,. 2np)=~ K(Z,2np—1)—- ¥YK(Z, 2np) - K(Z,, 2np)
(ZK(Z,,2np)—the path space of K(Z,,2np)). Let j: K(Z,,2np — 1) > E be the

inclusion of the fiber:
K(Z,,2np - 1)

/i \
E —> ZK(Z,,2np)
oo
h
K(Z,.,2n) —> K(Z,,2np)
Note that E is a loop space and let u denote its loop addition.

1.1. Tueorem (L. Smith, [4] proposition 5.5 III): A4s an algebra
H*(E,Z,) = (H*(K(Z,2,2n),Z,) [ im h*) @ im j*.

1.2. PrOPOSITION There exists ve H*/(E,Z,2) satisfying pv = (r*i,,)",
1, € H*(K(Z 2, 21), Z,2) and  j*vy = Biy,,-, where vo € H*"’(E,Z,) is the re-
duction of v.

Proor. Consider the following ladder of fibrations:

E LI e Z,2,2np)

r L)
A v

K(Z,,2n) LN K(Z ,2,2np)

h 8o
v v

K(Z,»2np) —> K(Z,,2np) x K(Z,,2np + 1)

where i, is the injection; g, = (go % 80)° A, go induced by the reduction
Z, - Z, of homotopy groups and g¢* (Tanp+1) = Batanps hgt2n, = (12,). One
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can check that ry induces the multiplication by p of homotopy groups.
v = jetsn, € H"(E,Z,.) is the desired class.

1.3 PROPOSITION: There exists vieH*"" (E, Z,) with

J*vy = Blapp—y and p*vy =0, @ 1 +1®@v; +

r—1 1

/1“5,1 ; (Z) (F*1,,) °® (r*iy,)?~°, 0#1eZ,.

Proor. Consider the fibration: K(Z,, 2np + YL E™S K(Z,,, 2np+1) in-
duced by hy: K(Z,2,2n+1) = K(Z,,2np + 2) h{'ty,,42=BP" i,,,, . Since h} is
a monomorphism in dim £2n+2 jT=0in dim <2np+ 1 and 1 ® Lonp € H¥
(QE,,Z,) = h*(K(Z,2, 2n) x K(Z,,2np),Z,) is not in im¢* . By [2] theorem 5.14,
it follows that 1®1,,, is not a primitive. This implies that a? 3 0 for

0 # aeHy(QE;,Z,) and hence, there exists a class ue H*"’(QE, Z,) with
p-1 1 '

u= X - (Z) QL)' RQr L) “and U =u'1+1® U2p- Choosing
a=1

a ditferent representation of QE, as a cartesian product K(Z,.,2n) x K(Z,, 2np)
one may assume that
r—1 1
@) = £ 5 () @iure@t,y .
Now, we have the following diagram:
hl
E—>E,

/

K(Z,2,2n +1)

b
vk,

K(Z,2np + 1} —>K(Z,,2np + 2)

and QE' = E; h*z‘tz,,pﬂ = P11 One can see that v1=(QI;’f) (1®12,,1,) is
the desired class. Note that v{ is primitive and by Theorem 1.1, v, — v, is in
the ideal generated by imr*.

1.4 LemMa.  Let F5ES B be a fibration. f: QB—F the inclusion of the
Siber of i. If te H¥(B,Z,) is in ker p*, then o*te H*(QB,Z,) is in imf*.

Proor. Consider the mapping g:B - K(Z,,|t|), with g*1 = 1 and where ||
denotes the dimnesion of t. Since gop ~* we have the following ladder:
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QB S > F ! s E— P _ B

o s s
K(Z,,|t|-1) —— K(Z,|t|-1) —> ZLK(Z,|t| (—> K(Z,|t])
and f*g3u, -, = o*t.

1.5. LemMa.  There exists w e PH*(E,Z,) satisfying j*0 = #" " '1,,,_, and
o*w = 1@ P ,,,_ ,e HXQE,Z,) = H*(K(Z,:,2n—1) x K(Z,,2np—2),Z,).

Proofr. Consider the fibration:

j r
K(Z,,2np) ——> E' 3 K(Z,3,2n + 1)

~ /

LK(Z,2np+1) ——> K(Z,,2np+1)

;"2np+1 = g“i2n+1 ’ QF = E.
Since 2”77'P" =0 271y, =0 and by 1.4 there exists »’'e H*(E',Z,)
satisfying jiw’ = 2" '1,,. 6*c*w’ = 1@ P N,,,_, +u' @ 1e HHQQE',Z,)

is a primitive and hence, u’ € PH*(K(Z,;,2n — 1),Z,) < imo*o*. Altering o’ by

np—1

p*

element in imr3 we have *6*@’ = 1 ® 2" "1,,,-, and @ = ¢*w’ is the desired

class,

1.6. PROPOSITION. Let &:H*(E,Z,) - H*(E, Z,) be the p-th power operation

&t =17, Then
P'pw — v% er*(im&) = E(imr*).

PROOF. j*(P'fw — v8) = (PP~ — #""P)1,,-,—1 = 0. Hence, by Theo-
rem 1.1, #'Bw — o7 is in the ideal generated by im r*. But #!fw — v} being a
primitive and since H*(K(Z:,2n), Z,) and im r* are primitively generated, this
implies that 2'fw — v e r*(PH*(K(Z,2,2n),Z,)). Finally ¢*(2"Bo —v]) =
1® P1pP" ™ ',,,_, = 0, hence P'fw — vf € r*[(PH*"K(Z,2, 2n) N ker o*]
r*(im¢).

1.7 PROPOSITION. v5— P'fw is in the ideal generated by
r*[ﬁg*(K(szy 2”)921))1 .

PROOF. v — v} = &(v, — vy) and @' fw — v} are in the ideal generated b
E(mr*). But since PP, = PPeQ,,ekerr*, &(imr*) = {r*4 where Ac
H*(K(Z,2,2n),Z,) is the algebra generated by BA*(K(Z,2,2n),Z,).
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1.8. TUEOREM. Let X be a topological space, p-—an odd prime, and
erz"(X,sz). If BH%(X,Z,) =0 and x* = py, then y* = pz for some
e H*(X,Z,).

ProoF. Let f: X — K(Z,:,2n) be given by f*i,, = x. f can be lifted to
fiX > E and by 1.2 x? = pf*v. Hence, y — f*v has order p. But as the
Bockstein exact sequence for X yields a short exact sequence,

0 » H*(X,Z,) » H*X,Z,2) » H*X,Z,) - 0,

HYX,Z,2) = H¥(X,Z,2) » H*X,Z,) >0 is exact and y—fv=pz, for
some zleHz"”(X,sz) Moreover, by 1.7, (f*v,)” is in the ideal generated
BH*(X,Zp) = 0, hence (f*1,)” = 0 and again (f*v)’ = pz,, z,€ H*"(X, Z,2).
It follows that (pz,)? = (y — f*v)” = y* — pz, + pz; and 1.8 follows.

1.9. CorOLLARY Let X be a topological space, p—an odd prime, and let G
be either Z or Z,. Suppose H*(X,G) » H¥(X,Z,) is onto. If xe H*(X, G)
satisfies x* = py then y¥ = pz for some zc H*"(X,G).

In order to prove 1.9, we first prove the following:

1.10. Lemma. If H¥(X,Z,) - H*(X,Z,) is onto, then
() H*X.Z,) BH*X,2,) <> H*(X,Z,) - 0 is exact.

(b) h*(X,Z,.)—ts H¥(X,Z,) is onto for all 1 ¢ < r.

s &pr

Proor. We first note that «,: H*(X,Z,t) - H*(X,Z,) is onto for all1 <t < r.
Hence, the Bockstein long exact sequence decomposes into short exact sequences:
0> H¥X, Zy-1) » H¥X,Z,) > H¥X,Z,) - 0. If (b), H¥X,Z,) —
H*(X,Z,-,) is onto, then it follows that:

(a), HYX,Z t) H*(X,Zp,) —> H¥(X,Z2,) > 0
is exact.

Suppose (@), holds.

Consider now o, 1,1 H*(X,Zy+1) » H(X,Z,). If xe H¥(X,Z,) then, for
some h; € H¥(X,Zp+1) X — o, 41 v, € kerla, and hence, by (a),, x = a,4,,y,+px,
for some x, € H*(X,Z,). Similarly,

Xy = Opy1,.y2 1 DXy

Xi—1 = Gpyede T DX,
x;GH*(X,ch)
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Therefore,

X = oy (3 + pya+ o+ P T y) + ',

and as p'x, = 0, it follows that
(D)er 1% 41,0 HNX,Z,411) > H¥(X, Z,)

is onto and the lemma follows from the inductive argument (a), = (b), .1 = (a),4,
((b), obviously holds.)

PROOF OF CORGLLARY. If x¥ =py, then the image of y ?in H*(X, Z,) is zero. This
follows from 1.8 by reducing x and y to H*(X,Z,.). But then, if G = Z,,, by
1.10 (a) y* = pz for some zeHZ"”Z(X,Zp,) The case G = Z follows similarly

from the exact sequence 0 — H*(X,Z) 2 H%X,Z) » HX(X,Z,) - 0

2. The case p = 2 and general remarks. The only proposition in section 1 which
fails to hold after replacing #* by Sq*is 1.5 as Sq **~28¢*" # 0.

Instead we have Sg*"~25¢*" 4+ Sq*""'S¢*"~! = 0. To overcome this difficulty,
we replace the ‘‘universal example”” E by E obtained as the fiber of
h:K(Z,2n) - K(Z,,4n) x K(Z,,4n—1)satisfying h*1,, = 15, h*¥14,_; = Sq*" '1,,.
We then have a class @eH*(E,Z,) with j*®& = S¢*" ?1,,_, ® 1 where
j:K(Z,,4n —1) x K(Z,,4n — 2) — E is the inclusion of the fiber. The mapping
f:X - K(Z4,2n) realizing the class x can still be lifted to f: X — £ as
Sg*" " 'x = 5q'Sq** ?x = 0 and the rest of the arguments follow through.

We would like to remark that, in general, if x? = py it might happen that y
is divisible by p and then 1.8 is essentially void. This, however, cannot happen
if X is an H-space and x] = 0 mod-p yields a (non zero mod-p) class x, with
x5 = 0mod-p and the procedure yields an oo tower of elements x,, xX=0, x,
being a (mod-p) 1-implication of x, (in the sense of W. Browder, see [1] page 357).
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