
A NOTE ON COHOMOLOGY WITH LIMITED TORSION 

BY 

A. ZABRODSKY 

ABSTRACT 

In this note we prove that if a class x in a torsion free (ordinary) cohomology 
ring of a topological space satisfies x p =py (p--a prime) than yP is divisible 
by p. The proof and the applications of this statement are related to the 
theory of secondary operations. 

0. Introduction 

0.1. General remarks: In this note, we prove the following: 

THEOREM: Let X be a topological space, and let p be a prime. Suppose 

flH*(X, Zp) = O. I f  x ~ H2n(x, Zp2) satisfies x p = py ,  then yP = pz for  some 

z ~ H2"P2(X, Zp). 

COROLLARY: Let X be a topological space, let p be a prime, and let G = Z 

or Z~,. Suppose the reduction H*(X,  G)--* H*(X,  Zp) is onto. I f  x e H2"(X, G) 

satisfies i~p = PY, then yP = pz for  some z E H2"p2(X,G). 

The interesting fact about these propositions is that the statements are con- 

cerned only with the module and ring structures of the cohomology. (Note that 

the condition f lH*(X, Zp) = 0 is equivalent to H*(X,  Zp2) being free Zp~ module. 

On the other hand, the proof  involves relations between primary and secondary 

operations. 

This note generalizes results of Hubbuck (see [3-1 lemma 1.3) who used k-theory 

operations in his study. As a matter of fact, the present note was motivated by 

his paper. 

0.2. Method of proof. A detailed proof  is carried out in section 1 for the case 

p-odd. The case p = 2 is discussed in Section 2. 

In the first step of the proof  of the theorem, it is shown (Proposition 1.2) that 

the mod-p reduction of  y is detected by a secondary operation q~ defined on x .  
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(This operation is studied also in [-5].) The second step shows that the mod-p 

reduction of y is zero by showing that ~"P~b can be decomposed (mod the ideal 

generated by fill* ( , Zp)) as ~ l f l ~  1 where ~b 1 is a secondary operation associated 

with the relation ~ , v - l ~ =  = 0 (p-odd). These two steps are sufficient for the 

proof of the theorem. 

1. The case p-odd. Let h:K(Zv2,2n ) ~ K(Zv,2np) be given by h ' t2,  p = 

(/'2,) v, i'2n E H2n(K(Zv2, 2n),Zp). Let r: E --* K(Zp2,2n) be the fibration induced 

by h from: ~K(Zp, 2np) ~ K(Zv,2n p - 1) -o ~.~K(Zp, 2np) ~ K(Zp, 2np) 

(~K(Zv,2np)-- the path space of K(Zp, 2np)). Let j:K(Zv, 2 n p -  1) -o E be the 

inclusion of the fiber: 
K(Zp, 2np - 1) 

E > ~q~K(Zp, 2np) 

h 
K(Z,~,2n) > K(Zp,2np) 

Note that E is a loop space and let # denote its loop addition. 

1.1. THEOREM (L. Smith, I-4]  proposition 5.5 III): As an algebra 

H*(E, Zp) ,~ (It*(K(Zv2, 2n), Zp) / / im h*) ® imj*.  

1.2. PROPOSITION There exists v~H2nV(E, Zp2) satisfying pv=(r*t2n) p, 

t2n~H2n(K(Zp2, 2n), Zp~) and j*vo = flt2np-1 where v o ~ H2np(E,Zp) is the re- 

duction of v. 

PROOF. Consider the following ladder of fibrations: 

E Jo > K Zp2,2np) 

lro 
ho g(Zp~, 2n) > K(Zv2, 2np) 

K(Zp,2np) i~ > K(Zv,2np)x K(Zv,2np + 1) 

where i 1 is the injection; go = (gd x g~)° A, go induced by the reduction 

Zp2 ~ Zp of  homotopy groups and "* ' -  = go ~,12~p+ 1) = f12 ~2.v; h~tz~p (t2n) p. One 
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can check that ro induces the multiplication by p 

V = j*t2n p ~ HznP(E, Zp2) is the desired class. 

1.3 PROPOSmON: There exists vl~HZ"P (E, Zp) with 

j*v 1 = f l t 2 n p _  1 and i~*v 1 = vl ® 1 + 1 ® v 1 + 

1 6 1  

of homotopy groups. 

2 ]~ - (r*~2,) (r*/2.) p-", 0 ~ 2 ¢ Zp. 
a=l  P 

Consider the fibration: K(Zp, 2np + 1)i~ E ~  K(Zp2, 2np + 1) PROOF. in- 

duced by th: K(Zp2, 2n + 1) ~ K(Zp, 2np + 2) h*t2np+ 2 =fl~ '  f2,,+1 • Since h~ is 

a monomorphism in dim < 2n + 2 j* = 0 in dim < 2np + 1 and 1 ® t2,p~H* 

(~E1, Zp) = h*(K(Zp2, 21,) × K(Zp, 2np), Zp) is not in im a*. By [2] theorem 5.14, 

it follows that 1 ® t 2 ,  p is not a primitive. This implies that a P~  0 for 
2np O#aeH2 . (~E~ ,Zp )  and hence, there exists a class u s H  (t)E,Z r) with 

fi*U = ]~ - (~r*t2n) a® (~r l t2n)  p-a and u = u' ® 1 + 1 ® t2n p. Choosing 
a = l  P 

a different representation of fiE 1 as a cartesian product K(Zp2,2n) × K(Zp, 2np) 

one may assume that 

- (Grit2,) ® (flrlt2,) . 
a = l P  

Now, we have the following diagram: 

E'  hi > E1 

+ /  
K(Zp2, 2n + 1) 

1:t,2 ~ 1  

K(Zp,2np + 1) > K(Zr,2np + 2) 

• n- and f i E ' =  E; h2tz,p+l = ~ t2 ,+1 .  One can see that va=(f i /~)  ( l® t2 .p )  is 

the desired class. Note that v p is primitive and by Theorem 1.1, Vo-  v~ is in 

the ideal generated by im r*. 

1.4 LEMMA. Let F -~ E Z B be a fibration, f: DB ~ F the inclusion of the 

tibet" of i. I f  teH*(B,  Zp) is in kerp*,  then a*t6H*(f~B, Zp) is in ira f * .  

PROOF. Consider the mapping g:B--, K(Zp, lt[) , with g*t = t and where It] 

denotes the dimnesion of t. Since gop ~* we have the following ladder: 
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f~B f > F i p E - -  > B  

/ ( z , , l t [ -  1) K ( z , , I t l -  1) :, ( g(z,,l¢l) 

and f*g~t l , l_  ~ = a*t. 

1.5. LEMMA. There exists ~oe PH*(E, Zp) satisfying j*~o = N"~-~t2,,p-1 and 

a*o~ = 1 ® t~ "p- ~ t2,,~_ 2 e H*(OE, Zp) = H*(K(Zp~, 2n - 1) x K(Zp, 2rip- 2), Zp). 

PROOF. Consider the fibration: 

K(Z~,2np) J2 E' r2 ;, ~, K(Z~,2n  + 1) 

~K(zp, znp+ 1) ~ K(Zp ,2np+J)  

h~t2,p+ a "' = ~ t 2 n + l  , ~'~E' = E .  

Since ~ p - l ~ ,  = 0 ~"P-at2,p+ 1 = 0 and by 1.4 there exists o~'~H*(E',Zp) 

satisfying j 'co '  = ~"P- l t2 ,  p. a ' a ' t o '  = 1 ® ~"P-lt2,p_2 + u'  ® 1 ~H*(f~2E',Zp) 

is a primitive and hence, u' ~ PH*(K(Zp2, 2n - 1), Zp) = im a ' a * .  Altering to' by 

element in imr~ we have a*a*o~' = 1 ® ¢~"P-Jt2,p-2 and co = tr*o~' is the desired 

class. 

1.6. PROPOSITION. Let ~:H*(E, Zp) ~ H*(E, Zp) be the p-th power operation 

i t  = t p. Then 

~lflco - v~ ~ r*(im 4) = ~(im r*). 

PROOF. j*(~lfl¢o -- v~) = (~1fl~,p-1 _ ~"Pfl)t2,-p-1 = 0. Hence, by Theo- 

rem 1.1, 9~1fl¢o - v~ is in the ideal generated by im r*. But ~l f lw - vPt being a 

primitive and since H*(K(Zp:, 2n), Zp) and im r* are primitively generated, this 

implies that ~xflw - v~r*(PH*(K(Zp, ,2n) ,Zp)) .  Finally a*(¢~Pflo~ - v]) = 

1 ® ~lflPnP-lt2np- 2 = 0 ,  hence 9~1flco - v~ e r*[(PH2"PK(Zp~, 2n) N ker a*] = 

r*(im~). 

1.7 PROPOSITION. Vg--~lfl¢O is in the ideal generated by 

r*E~B*(K(z , . ,2n) ,Z , )]  . 

PROOF. P P V l -  Vo = ~ ( v l -  Vo) and ~a  f l w -  v~ are in the ideal generated b 

~(im r*).  But since ~JF2 ,  = ~PJ~t2,~kerr* ,  ~(imr*) = ~r*A where A = 

H* (K(Zp,, 2n),Z~) is the algebra generated by fllq*(K(Zp2,2n),Zp). 
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1.8. THEOREM. 

X ~ H2n(X, Zv2 ) . 

Z ~ H2np2(X, Zp2). 

COHOMOLOGY 

Let X be a topological space, 

I f  flH*(X, Zp)= 0 and xP= py,  
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p--an odd prime, and 

then yP = pz for some 

PROOF. Let f: X ~ K(Zp~,2n) be given by f * t z ,  = x .  f can be lifted to 

f : X - ~ E  and by 1.2 x p = p f*v .  Hence, y - f * v  has order p .  But as the 

Bockstein exact sequence for X yields a short exact sequence, 

0 --, H*(X, Zp) ~ H*(X, Zp~) -~ ~/*(X, Z,)  - ,  O, 

H*(X, Zp2) ×p~H*(X,Zp~ ) ~ H*(X, Zp) ~ 0 is exact and y - f v  = pz 1 for 

some z 1 E H 2 n p ( X ,  Z t ,2) .  Moreover, by 1.7, (f*vo) v is in the ideal generated 

fl~q*(X, Zp) = 0, hence (f*Vo) v = 0 and again ( f ' v )  v = pz2, z 2 E HZnp2(x, Zv2 ). 

It follows that (pzl) p = (y - f ' v )  p = yg - pz 2 + pz 3 and 1.8 follows. 

1.9. COROLLARY Let X be a topological space, p--an odd prime, and let G 

be either Z or Zp~. Suppose H*(X,G)--* H*(X, Zp) is onto. I f  x~H2"(X,G)  

satisfies x p = py then y~ = pz for some z~HZ"V"(X,G). 

In order to prove 1.9, we first prove the following: 

1.10. LEMMA. I f  H*(X, Zp,) ~ H*(X, Zp) is onto, then 

(a) H*(X, Zp~) xP~H*(X, Zvr) a,> H*(X, Zp) ~ 0 is exact. 

(b) h*(X, Zp~) a"t)-H*(X,  Zp,) is onto for all 1 < t <_ r. 

PROOF. We first note that at: H*(X, Zpt) ~ H*(X, Zp) is onto for all 1 _< t < r. 

Hence, the Bockstein long exact sequence decomposes into short exact sequences: 

0 ~ H*(X, Zp,-I) ~ H*(X, Zp,) -~ H*(X, Zp) ~ O. I f  (b)t H*(X, Zp,) 

H*(X, Zp,-,) is onto, then it follows that:  

(a)t H*(X,Z, , )  xp> H*(X,Z~,) at> H*(X,Z~) ~ 0 

is exact. 

Suppose (a)t holds. 

Consider now at+~,,: H*(X, Zv,. ,)  ~ H*(X, Zp,). I f  x ~ H * ( X ,  Zp,) then, for 

some h t ~ H*(X, Zp, + ~) x - cq + 1.tYl ~ kerl a t and hence, by (a) t  , X = OCt + 1 tY 1 + pX1 

for some xl ~ H*(X, Zp,). Similarly, 

x 1 = at+a,ty 2-~-px a 

xt-1 = at+x,tYt + p x t  

x~ ~ H*(X, Zp,) 
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Therefore, 

X = O:t+l,t(y t "4- PY2 + "'" + p t - l y t )  "1- ptxt 

and as ptx t = 0, it follows that 

(b)t+lat+, ,t: H*(X,  Zp,+,I) ~ H*(X,  Z,,) 

is onto and the lemma follows from the inductive argument (a)t ~ (b),+l =~ (a),+ 1 

((b)1 obviously holds.) 

PROOF OF COROLLARY. If  X p =py, then the image of) ,  Pin H*(X, Zp) is zero. This 

follows from 1.8 by reducing x and y to H*(X,  Zp2). But then, if G = Zz¢, by 

1.10 (a) yP = pz for some z ~Hz"P2(X,Zp,) The case G = Z follows similarly 
×p 

from the exact sequence 0 --. H*(X, Z) ~ H*(X,  Z) ~ H*(X,  Zp) ~ 0 

2. The ease p = 2 and general remarks. The only proposition in section 1 which 

fails to hold after replacing ~k by SqZkis 1.5 as Sq 4"-2SqZ" ¢ O. 

Instead we have Sq4"-2Sq z" + Sq 4"- ~Sq z"- 1 = 0. To overcome this difficulty, 

we replace the "universal example" E by ~P obtained as the fiber of 

h :K(Z4,2n) ~ K(Z2,4n) × K(Z2,4n - 1) satisfying ~* t4, = t2,, h* tgn _ 1 ----- Sq  2n - i t2n. 

We then have a class ~5~H*(ff~,Z2) with ]*& = S q 4 " - : t 4 . _ l ® 1  where 

] :K(Z2 ,4n  - 1 )  x K(Zz ,4n  - 2) --. ~ is the inclusion of the fiber. The mapping 

f : X  ~ K(Z4,2n)  realizing the class x can still be lifted to f : X  ~ ~ as 

Sq4"-Ix  = SqlSq4"-2x = 0 and the rest of the arguments follow through. 

We would like to remark that, in general, if x p = py it might happen that y 

is divisible by p and then 1.8 is essentially void. This, however, cannot happen 

if X is an H-space and x~ = 0 mod-p yields a (non zero rood-p) class x2 with 

t' O, X n x~ = 0 m0d-p and the procedure yields an ~ tower of elements x,, x. = 

being a (mod-p) 1-implication of x, (in the sense of W. Browder, see [1] page 357). 
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